Papillary Muscle and Moderator Band Ventricular Tachycardia

VT Symposium 2018

Nov 3, 2018

Jaemin Shim, MD, PhD

Arrhythmia Center Korea University Anam Hospital, Seoul, Korea

Papillary Muscles (PM) of Left Ventricle

Papillary Muscles (PM) of Left Ventricle

Naksuk N et al. Card Electrophysiol Clin. 2016;8:555-65

KOREA UNIVERSITY MEDICAL CENTER

LV Angiography

Papillary Muscles (PM) of Right Ventricle

Naksuk N et al. Card Electrophysiol Clin. 2016;8:555-65

Mechanism

Triggered activity or abnormal automaticity

- Sensitive to catecholamines
- Noninducible by programmed stimulation
- The first beat of tachycardia is typically similar to subsequent beats
- Non-entrainable
- Typical lack of low voltage or fractionated potentials at the sites of ablation success

• LV Anterior PM

- RBBB, right inferior axis
- Transition at leads V3-V5
- Inferior lead discordance (lead II (-), lead III (+))

LV Posterior PM

- RBBB, superior axis
- Transition at leads V3-V5

PM VT vs. Fascicular VT

APM

PPM

Fascicular

	PM VT	Fascicular VT
QRS duration	150±15	127±11
V1	qR or R	rsR'
Q waves I, aVL	No	Yes

Good E et al. Heart Rhythm 2008;5:1530–1537 Al'Aref SJ et al. Circ Arrhythm Electrophysiol. 2015;8:616-24

Differentiation of PM VT vs. Fascicular VT

	PM VT	Fascicular VT	
Age	Older	Younger	
Manifestation	Sustained VT < PVC or NSVT	Sustained VT > PVC or NSVT	
Response to verapamil	(-)	(+)	
Mechanism	Abnormal automaticity or triggered activity	Re-entry	
ECG			
V1 QRS morphology	RBBB, qR or R	RBBB, rsR'	
QRS duration	Longer	Shorter	
Q wave in I and aVL	(-)	(+)	
Mode of induction	Isoproterenol or epinephrine infusion and burst pacing	Programmed electrical stimulation	
Fractionated potentials at the successful sites	(-)	(+)	
Recurrence after RFCA	Relatively high	Low	

Modified from Park YM. Int J Arrhythm 2015;16:219-223

Moderator band (MB)

- LBBB, left superior axis
- Late transition (≥V4)
- RV PM
 - LBBB
 - Anterior or posterior PM: late transition (≥V4), superior axis > inferior axis
 - Septal PM: early transition and inferior axis, similar to RVOT VT, but wider QRS and notching in precordial leads

Sadek MM et al. Heart Rhythm. 2015;12:67-75.

Moderator Band

Crawford T et al. Heart Rhythm. 2010;7:725-30

Mapping Technique

• Transaortic vs.Transseptal

- Transaortic: PPM or medial aspect of APM
- Transseptal: lateral APM, steerable sheath

Activation mapping

- Most commonly used
- ≥-30 ms earlier than QRS
- QS pattern in unipolar recording
- Sharp early signals: a more superficial location
- Far-field signals: a deeper location
- Sharp Purkinje potential (~40%)

Purkinje Potential during Mapping

Doppalapudi H et al. Circ Arrhythm Electrophysiol. 2008;1:23-9

KOREA UNIVERSITY MEDICAL CENTER

CASE 1

• F/54, palpitation

Purkinje potential, -35ms earlier than QRS

Mapping Technique

Pace mapping

- Useful, but not sufficient by itself
- Possibility of capturing adjacent tissue
- Sites of successful ablation usually exhibit an excellent pace map (≥11/12)
- Ablation at sites with perfect pace maps may fail to terminate the arrhythmia (exit site vs. origin)
- ICE is fundamental to allow real-time visualization of PM and ensure proper catheter-tissue contact

Mapping Technique

ICE allows clear visualization and confirmation of contact

PPM

APM

Naksuk N et al. Card Electrophysiol Clin. 2016;8:555-65

KOREA UNIVERSITY MEDICAL CENTER

M/65, Palpitation and dyspnea, DM, HTN

KOREA UNIVERSITY MEDICAL CENTER

VEST 400/300/290/220 – VT Induction

ĥζ

KOREA UNIVERSITY MEDICAL CENTER

• VT – TCL 300ms

CASE 2

Comparison of induced VT vs. clinical VT

Activation mapping, -25ms earlier than QRS

Activation mapping

Pace mapping

Successful ablation site

PSH #1685630

Ablation site on ICE

VT termination during ablation

VEST 400/260/250/240 – No VT Induction

Post ablation

F/58, Palpitation and chest pain

KOREA UNIVERSITY MEDICAL CENTER

Cardiac MRI

• VT induction

KOREA UNIVERSITY MEDICAL CENTER

• VT, 12 lead ECG

Ш

Activation mapping, -29ms earlier than QRS

KOREA UNIVERSITY MEDICAL CENTER

VT termination during ablation

Ablation site, retrograde transaortic approach

However, VT was still inducible despite repeated ablation...

Transseptal approach, LV angiogram

• VT induction, activation map, -43ms earlier than QRS

VT termination during ablation

KOREA UNIVERSITY MEDICAL CENTER

Successful ablation site

Catheter Ablation

Challenging issues

- Complexity and variability of PM anatomy
- Potentially deep intramural site of origin
- Catheter stability
- Deep intramural origin
 - Best site of activation is ≤20 ms pre-QRS
 - The signal appears farfield looking
 - QRS morphology changes with an RF application
 - Surround the base of the PM with lesions aiming for exit block

Catheter Ablation

Techniques to improve procedural success

- Irrigated-tip, 8mm tip catheter
- RV pacing
- ICE to evaluate catheter contact
- Carto-sound or MDCT image integration with electroanatomical mapping
- Contact force sensing catheter
- Cryoablation

Outcome of Catheter Ablation

- N=1,185 (55% female; mean age 52 ±15 years)
- at 8 centers between 2004 and 2013

Latchamsetty R et al. JACC Clin Electrophysiol. 2015;1:116-123.

KOREA UNIVERSITY MEDICAL CENTER

Predictors of Outcome

High-amplitude discrete potentials before QRS and slow downstroke of the initial Q wave on the unipolar egm were related to favorable outcome

Ban JE et al. Korean Circ J. 2013;43:811-8.

Predictors of Outcome

 The presence of Purkinje potentials at the site of origin and a smaller size of the PAP are associated with successful ablation of PAP arrhythmias.

	Effective (n=31)	Ineffective (n=9)	P- value
N of PVC morphologies	4±3	4±5	0.6
P-potential at ablation site	15 (48%)	0 (0%)	0.02
Activation time (ms)	-31± 18	-28±7	0.66
Pacemapping	22(71%)	2 (22%)	0.02
Total PM mass	5.3±1.8	9.1± 4.8	<0.01
Arrhythmogenic PM mass	2.3±0.6	4.7±2.2	<0.01

Yokokawa M et al. Heart Rhythm 2010;7:1654 –1659.

Summary

- **Mechanism**: focal (non-reentry)
- ECG characteristics: differential diagnosis and preprocedural planning
- Mapping: activation mapping complemented with pace mapping
- **Catheter ablation**: effective but challenging
 - Complex anatomy and stability issue
 - Often deep site of origin with multiple exits
 - Multiple ablation lesions frequently required
- Use of ICE: help localization and good contact

EP study, catheter position

RAO

